Home Companies Hangzhou Powersonic Equipment Co., Ltd.

Ultrasonic homogenizer emulsifier in different industrial usage with high amplitude sonotrode

Hangzhou Powersonic Equipment Co., Ltd.

Contact Us

[China] country

Trade Verify

Address: Enbo Street 1028, Fuyang,Hangzhou ,ZheJiang

Contact name:Yvonne Han

Inquir Now

Hangzhou Powersonic Equipment Co., Ltd.

Verified Suppliers
  • Trust
    Seal
  • Verified
    Supplier
  • Credit
    Check
  • Capability
    Assessment

Ultrasonic homogenizer emulsifier in different industrial usage with high amplitude sonotrode

Country/Region china
City & Province hangzhou zhejiang
Categories Switches
InquireNow

Product Details

Ultrasonic homogenizer emulsifier in different industrial usage with high amplitude sonotrode

 

What is ultrasonic emulsifier?

Ultrasonic emulsification refers to the process of mixing two (or more than two) immiscible liquids evenly to form a dispersion system under the action of ultrasonic energy, in which one liquid is evenly distributed in another liquid to form an emulsion.
principle:
The physical mechanism for crushing insoluble solids (or liquids) is believed to be ultrasonic cavitation. Ultrasonic cavitation effect means that under the action of strong ultrasonic waves, a large number of bubbles will be generated in the liquid. The small bubbles will gradually grow and increase with the ultrasonic vibration, and then suddenly burst and split. The split bubbles will continue to grow and burst. . When these small bubbles collapse rapidly, high temperature and high pressure are generated in the bubble, and because the liquid around the bubble rushes into the bubble at high speed, a strong local shock wave is generated in the liquid near the bubble, which also forms local high temperature and high pressure, thus producing Ultrasonic crushing and emulsification.


What is the application of a emulsifer in Industrial use?
In the pharmaceutical industry and daily necessities industry sector, phacoemulsification is often used to manufacture various emulsion products, such as emulsion drugs, cosmetics, and leather shoe polish. Ultrasonic emulsification method can also be used to produce emulsified combustion products of oil (gasoline, diesel, etc.) and water or pulverized coal to improve the combustion value of unit fuel.
This technology has now been promoted and used within a limited scope, and the economic benefits are obvious. In order to reduce costs and adapt to larger-scale production, mechanical ultrasonic transducers such as reed whistles are mostly used in phacoemulsification. For liquids that are difficult to emulsify or for other special considerations, piezoelectric ultrasonic transducers are sometimes used together with an appropriate sound focusing system to increase the sound intensity.
Phacoemulsification has been used in many fields and plays its unique role in each field.
There are many industrialized applications of phacoemulsification, and phacoemulsification is one of the earliest technologies for ultrasound to be used in food processing. For example, soft drinks, ketchup, mayonnaise, jam, artificial milk, baby food, chocolate, salad oil, oily sugar water and other mixed foods used in the food industry have been tested and adopted at home and abroad, and have achieved improvements. The effect of product quality and production efficiency, and aqueous carotene emulsification has been successfully tested and used in production.
The banana peel powder was pre-treated using physical modification method of ultrasonic dispersion combined with high-pressure cooking, and then enzymatically hydrolyzed by amylase. A single factor experiment was used to study the effect of this pretreatment method on the extraction rate of soluble dietary fiber in banana peels and the physical and chemical properties of insoluble dietary fiber in banana peels. The results showed that ultrasonic dispersion combined with high-pressure cooking is better than simple treatment without pretreatment. The insoluble dietary fiber obtained by enzyme treatment has an increase in water holding capacity of 5.05g/g, water binding capacity of 4.66g/g, oil holding capacity of 4.60g/g, and swelling property of 0.4mL/g.

Parameter:

Itemsono-20-1000sono-20-2000sono-20-3000sono-15-3000
Frequency20khz±0.520khz±0.520khz±0.515khz±0.5
Power1000w2000w3000w3000w
Voltage110 or 220V
Max temp300℃
Max pressure35Mpa
Itensity of sound20W/cm²40W/cm²60W/cm²60W/cm²
Capacity10L/min15L/min20L/min20L/min
Material of probeTitanium

what is the best emulsifier?
The average droplet size of the emulsion formed by ultrasonic emulsification is small, which can be 0.2 to 2um; the droplet size distribution range is narrow, which can be 01 to 10um or narrower. 
The concentration of ultrasonic emulsion is high. The concentration of pure emulsion can exceed 30%, and the concentration of emulsifier can be as high as 70%.
The formed emulsion is more stable. An important feature of ultrasonic emulsification is that no or less emulsifiers can be used to produce an extremely stable emulsion.
You can control the type of lotion. Using ultrasonic emulsification, under certain sound field conditions, both O/W (oil-in-water) and W/O (water-in-oil) emulsions can be prepared; however, this is not possible with mechanical emulsification methods, only the properties of the emulsifier You can control the type of lotion.
Toluene emulsifies in water, forming one type of emulsion under low sound intensity conditions and another type of emulsion under high sound intensity conditions.
Ultrasonic emulsification requires little power to produce milk residue.

how is the ultrasonic make efficient emulsification?

Ultrasonic emulsification achieves efficient emulsification through a phenomenon called cavitation. Cavitation refers to the formation, growth, and violent collapse of microscopic bubbles within a liquid.

When an ultrasonic emulsifier is operated, it emits high-frequency sound waves into the liquid medium. These sound waves create alternating high-pressure and low-pressure cycles in the liquid, leading to the formation of tiny bubbles through a process called nucleation. These bubbles are typically on the order of micrometers in size.

During the low-pressure cycle of the sound wave, the bubbles expand due to reduced pressure. As the pressure increases during the high-pressure cycle, the bubbles rapidly collapse. This collapse of the bubbles is known as implosion or cavitation.

The collapse of these bubbles generates localized hotspots with extremely high temperatures and pressures. The temperature inside the collapsing bubbles can reach thousands of degrees Celsius, while the pressure can exceed 1,000 atmospheres. This phenomenon is called transient cavitation.

The violent collapse of the bubbles during cavitation produces intense shear forces, shockwaves, and microjets within the liquid. These forces cause the disruption and breakup of larger droplets or particles into smaller ones. The liquid experiences intense turbulence, resulting in the dispersion of the dispersed phase into smaller droplets and their distribution throughout the continuous phase.

Hot Products

Ultrasonic fabric cutting and slitting on machines with round knives Ultrasonic slitting on machines ...
Ultrasonic slitting of fabric rolls for polyster and non-woven fabric Ultrasonic fabric slitting is ...
35khz ultrasonic Widemist Ultrasonic Atomizer Spray Nozzle for fuel Cell Manufacturing What is the ...
20khz/600W ultrasonic tin plating machine dip soldering machine Do you know what is the ultrasonic ...
Ultrasonic homogenizer for the industrial production of pigment and polymer dispersions What is the ...
Ultrasonic homogenizer emulsifier in different industrial usage with high amplitude sonotrode What ...