Home Companies QINGDAO ENNENG MOTOR CO.,LTD.

Direct Drive Three Phase Permanent Magnet Gearless Synchronous Motors

QINGDAO ENNENG MOTOR CO.,LTD.

Contact Us

[China] country

Trade Verify

Address: No. 18, Xinye Road, High-Tech Zone, Qingdao,Shandong, China

Contact name:Cindy

Inquir Now

QINGDAO ENNENG MOTOR CO.,LTD.

Verified Suppliers
  • Trust
    Seal
  • Verified
    Supplier
  • Credit
    Check
  • Capability
    Assessment

Direct Drive Three Phase Permanent Magnet Gearless Synchronous Motors

Country/Region china
City & Province qingdao shandong
InquireNow

Product Details

Direct Drive Three Phase Permanent Magnet Gearless Synchronous Motors

Energy Efficiency Standards
comply with GB30253-1 grade
Work Mode
S1
Altitude
below 1000m
Environmental Temperature
-15~+40℃
Installation Dimensions
comply with IEC standard
Control Mode
variable frequency vector control
Power Range
5.5 〜3000kw
Install Type
IMB3 IMB5 IMB35
Cooling Way
IC411 or IC416
Rated Efficiency
50,75,125,150Hz(customized as per requirement)
Insulation Class
F(H)
Optional Parts
Encoder, spiral transformer, PTC, PT100
Protection Grade
IP54(IP23 customizable)
Wiring Type
junction box (aviation plug can be customized as per requirement)
Installation
IMB3 IMB5 IMB35
Rated Voltage
380V±10%,660V±10%

Required Environment
below 1000m altitude
temperature -15〜45°C
relative humidity below 90%

 

What Is The Permanent Magnet Synchronous Motor?

 

The PERMANENT MAGNET SYNCHRONOUS MOTOR is mainly composed of the stator, rotor, chassis, front-rear cover, bearings, etc. The structure of the stator is basically the same as that of ordinary asynchronous motors, and the main difference between the permanent magnet synchronous motor and other kinds of motors is its rotor.

 

The permanent magnet material with pre-magnetized (magnetic charged) magnetic on the surface or inside the permanent magnet of the motor, provides the necessary air gap magnetic field for the motor. This rotor structure can effectively reduce the motor volume, reduce loss and improve efficiency.

 

Technical Characteristics:
  • Energy efficient
The synchronous machine has higher efficiency and a wider high-efficiency area
The energy-saving effect is more obvious under variable load conditions.
  • high power density
Smaller size, saving installation space
Less vibration and noise
  • High-Reliability Design
Adopt high-quality design requirements, suitable for harsh environments
Permanent magnets use high-grade permanent magnets
Built-in temperature protection
When the motor is installed horizontally without axial force,
Bearing life can reach at least 40000 hours
  • Matched with a special frequency converter
Better performance
Better control curve
Temperature protection
Field weakening control is more reasonable
Detailed pictures

Working Principle

 

The permanent magnet synchronous motor working principle is similar to the synchronous motor. It depends on the rotating magnetic field that generates electromotive force at synchronous speed. When the stator winding is energized by giving the 3-phase supply, a rotating magnetic field is created in between the air gaps.

 

This produces the torque when the rotor field poles hold the rotating magnetic field at synchronous speed and the rotor rotates continuously. As these motors are not self-starting motors, it is necessary to provide a variable frequency power supply.

 

Applications:
 
Elevators, fans, pumps, conveyors, exhausts, textile industry machines, compressors, and other applications where speed variation, high efficiency, low noise, and reduced volume are core concerns.

 

Why choose permanent magnet AC motors?

 

Permanent magnet AC (PMAC) motors offer several advantages over other types of motors, including:

 

High Efficiency: PMAC motors are highly efficient due to the absence of rotor copper losses and reduced winding losses. They can achieve efficiencies of up to 97%, resulting in significant energy savings.

 

High Power Density: PMAC motors have a higher power density compared to other motor types, which means they can produce more power per unit of size and weight. This makes them ideal for applications where space is limited.

 

High Torque Density: PMAC motors have a high torque density, which means they can produce more torque per unit of size and weight. This makes them ideal for applications where high torque is required.

 

Reduced Maintenance: Since PMAC motors have no brushes, they require less maintenance and have a longer lifespan than other motor types.

 

Improved Control: PMAC motors have better speed and torque control compared to other motor types, making them ideal for applications where precise control is required.

 

Environmentally Friendly: PMAC motors are more environmentally friendly than other motor types since they use rare earth metals, which are easier to recycle and produce less waste compared to other motor types.

 

Overall, the advantages of PMAC motors make them an excellent choice for a wide range of applications, including electric vehicles, industrial machinery, and renewable energy systems.

 

SPM versus IPM

A PM motor can be separated into two main categories: surface permanent magnet motors (SPM) and interior permanent magnet motors (IPM). Neither motor design type contains rotor bars. Both types generate magnetic flux by the permanent magnets affixed to or inside of the rotor.

 

SPM motors have magnets affixed to the exterior of the rotor surface. Because of this mechanical mounting, their mechanical strength is weaker than that of IPM motors. The weakened mechanical strength limits the motor’s maximum safe mechanical speed. In addition, these motors exhibit very limited magnetic saliency (Ld ≈ Lq).

 

Inductance values measured at the rotor terminals are consistent regardless of the rotor position. Because of the near unity saliency ratio, SPM motor designs rely significantly, if not completely, on the magnetic torque component to produce torque.

 

IPM motors have a permanent magnet embedded into the rotor itself. Unlike their SPM counterparts, the location of the permanent magnets makes IPM motors very mechanically sound, and suitable for operating at very high speeds. These motors also are defined by their relatively high magnetic saliency ratio (Lq > Ld). Due to their magnetic saliency, an IPM motor has the ability to generate torque by taking advantage of both the magnetic and reluctance torque components of the motor.

 

The development prospect of permanent magnet motor

 

The future of permanent magnet motors appears promising, driven by the need for energy efficiency, the expansion of renewable energy, and the growing demand for industrial automation. With ongoing research and development efforts, it is anticipated that permanent magnet motors will continue to evolve, offering even higher efficiency, power density, and reliability. As a result, they will play a crucial role in shaping a sustainable and technologically advanced future.

Hot Products

High-Efficiency Water Cooled PMSM Permanent Magnet Electric Motor Energy Efficiency Standards comply ...
Energy Saving Liquid Cooled High Torque Permanent Magnet Motor Energy Efficiency Standards comply ...
Energy Saving 3 Phase Permanent Magnet Motor For Cooling Tower What Is The Permanent Magnet ...
Low Maintenance Variable Speed Permanent Magnet Motor For Cooling Tower Energy efficiency standards ...
PMAC High Efficiency Eco Friendly Permanent Magnet Synchronous Motor What Is The Permanent Magnet ...
75kw 90kw Permanent Magnet Motors For Compressors And Conveyors Energy Efficiency Standards comply ...