Home Companies XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD.

4H N Type SiC(Silicon Carbide) Lapping Wafer, 4”Size - Powerway Wafer

XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD.
Active Member

Contact Us

[China] country

Address: #506B, Henghui Business Center, No.77, Lingxia Nan Road, High Technology Zone, Huli, Xiamen 361006, China

Contact name:

Inquir Now

XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD.

4H N Type SiC(Silicon Carbide) Lapping Wafer, 4”Size - Powerway Wafer

Country/Region china
City & Province xiamen fujian
Categories Refractory
InquireNow

Product Details

4H N Type SiC(Silicon Carbide) Lapping Wafer, 4”Size - Powerway Wafer

 

PAM-XIAMEN offers semiconductor silicon carbide wafers,6H SiC and 4H SiC in different quality grades for researcher and industry manufacturers. We has developed SiC crystal growth technology and SiC crystal wafer processing technology,established a production line to manufacturer SiCsubstrate,Which is applied in GaNepitaxydevice,powerdevices,high-temperature device and optoelectronic Devices. As a professional company invested by the leading manufacturers from the fields of advanced and high-tech material research and state institutes and China’s Semiconductor Lab,weare devoted to continuously improve the quality of currently substrates and develop large size substrates.

 

Here shows detail specification::

SILICON CARBIDE MATERIAL PROPERTIES

PolytypeSingle Crystal 4HSingle Crystal 6H
Lattice Parametersa=3.076 Åa=3.073 Å
 c=10.053 Åc=15.117 Å
Stacking SequenceABCBABCACB
Band-gap3.26 eV3.03 eV
Density3.21 · 103 kg/m33.21 · 103 kg/m3
Therm. Expansion Coefficient4-5×10-6/K4-5×10-6/K
Refraction Indexno = 2.719no = 2.707
 ne = 2.777ne = 2.755
Dielectric Constant9.69.66
Thermal Conductivity490 W/mK490 W/mK
Break-Down Electrical Field2-4 · 108 V/m2-4 · 108 V/m
Saturation Drift Velocity2.0 · 105 m/s2.0 · 105 m/s
Electron Mobility800 cm2/V·S400 cm2/V·S
hole Mobility115 cm2/V·S90 cm2/V·S
Mohs Hardness~9~9

 

4H N Type SiC Lapping Wafer, 4”Size

4" 4H Silicon Carbide
Item No.TypeOrientationThicknessGradeMicropipe DensitySurfaceUsable area
 N-Type
S4H-100-N-SIC-350-A4" 4H-N0°/4°±0.5°350±25umA<10/cm2P/P>90%
S4H-100-N-SIC-350-B4" 4H-N0°/4°±0.5°350±25umB< 30/cm2P/P>85%
S4H-100-N-SIC-350-D4" 4H-N0°/4°±0.5°350±25umD<100/cm2P/P>75%
S4H-100-N-SIC-370-L4" 4H-N0°/4°±0.5°370±25umD*L/L>75%
S4H-100-N-SIC-440-AC4" 4H-N0°/4°±0.5°440±25umD*As-cut>75%
S4H-100-N-SIC-C0510-AC-D4" 4H-N0°/4°±0.5°5~10mmD<100/cm2As-cut*
S4H-100-N-SIC-C1015-AC-C4" 4H-N0°/4°±0.5°5~10mmC<50/cm2As-cut*

 

SiC crystal growth

Bulk crystal growth is the technique for fabrication of single crystalline substrates , making the base for further device processing.To have a breakthrough in SiC technology obviously we need production of SiC substrate with a reproducible process.6H- and 4H- SiC crystals are grown in graphite crucibles at high temperatures up to 2100—2500°C. The operating temperature in the crucible is provided either by inductive (RF) or resistive heating. The growth occurs on thin SiC seeds. The source represents polycrystalline SiC powder charge. The SiC vapor in the growth chamber mainly consists of three species, namely, Si, Si2C, and SiC2, which are diluted by carrier gas, for example, Argon. The SiC source evolution includes both time variation of porosity and granule diameter and graphitization of the powder granules.

 

SiC Insulators: Thermal Oxides and MOS Technology

The vast majority of semiconductor-integrated circuit chips in use today rely on silicon metal-oxide–

semiconductor field-effect transistors (MOSFETs), whose electronic advantages and operational

device physics are summarized in Katsumata’s chapter and elsewhere . Given the extreme

usefulness and success of inversion channel MOSFET-based electronics in VLSI silicon (as well as

discrete silicon power devices), it is naturally desirable to implement high-performance inversion

channel MOSFETs in SiC. Like silicon, SiC forms a thermal  when it is sufficiently heated in an

oxygen environment. While this enables SiC MOS technology to somewhat follow the highly successful

path of silicon MOS technology, there are nevertheless important differences in insulator quality and

device processing that are presently preventing SiC MOSFETs from realizing their full beneficial

potential. While the following discourse attempts to quickly highlight key issues facing SiC MOSFET

development, more detailed insights can be found in References 133–142.

From a purely electrical point of view, there are two prime operational deficiencies of SiC oxides and

MOSFETs compared to silicon MOSFETs. First, effective inversion channel mobilities in most SiC MOSFETs

are lower than one would expect based on silicon inversion channel MOSFET carrier mobilities.

This seriously reduces the transistor gain and current-carrying capability of SiC MOSFETs, so that SiC

MOSFETs are not nearly as advantageous as theoretically predicted. Second, SiC oxides have not proven

as reliable and immutable as well-developed silicon oxides, in that SiC MOSFETs are more prone to

threshold voltage shifts, gate leakage, and oxide failures than comparably biased silicon MOSFETs. In

particular, SiC MOSFET oxide electrical performance deficiencies are attributed to differences between

silicon and SiC thermal oxide quality and interface structure that cause the SiC oxide to exhibit undesirably

higher levels of interface state densities (), fixed oxide charges (),

charge trapping, carrier oxide tunneling, and lowered mobility of inversion channel carriers.

In highlighting the difficulties facing SiC MOSFET development, it is important to keep in mind that

early silicon MOSFETs also faced developmental challenges that took many years of dedicated research

efforts to successfully overcome. Indeed, tremendous improvements in 4H-SiC MOS device performance

have been achieved in recent years, giving hope that beneficial 4H-SiC power MOSFET devices for

operation up to 125°C ambient temperatures might become commercialized within the next few years.

For example, 4H-SiC MOSFET inversion channel mobility for conventionally oriented (8° off (0001)

c-axis) wafers has improved from <10 to >200 , while the density of electrically detrimental

SiC– interface state defects energetically residing close to the conduction band edge has dropped by

an order of magnitude . Likewise, alternative SiC wafer surface orientations such as ( )

and ( ) that are obtained by making devices on wafers cut with different crystallographic orientations

(Section 5.2.1), have also yielded significantly improved 4H-SiC MOS channel properties .

One key step to obtaining greatly improved 4H-SiC MOS devices has been the proper introduction

of nitrogen-compound gases (in the form of ) during the oxidation and postoxidation

annealing process . These nitrogen-based anneals have also improved the

stability of 4H-SiC oxides to high electric field and high-temperature stressing used to qualify and

quantify the reliability of MOSFETs . However, as Agarwal et al. have pointed out, the wide

bandgap of SiC reduces the potential barrier impeding tunneling of damaging carriers through oxides

grown on 4H-SiC, so that 4H-SiC oxides cannot be expected to attain identical high reliability as

thermal oxides on silicon. It is highly probable that alternative gate insulators besides thermally grown

 will have to be developed for optimized implementation of inversion channel 4H-SiC insulated

gate transistors for the most demanding high-temperature and high-power electronic applications. As

with silicon MOSFET technology, multilayer dielectric stacks will likely be developed to further enhance

SiC MOSFET performance .

 

Hot Products

4H Semi-Insulating SiC Production Grade With High Resistivity,4”Size PAM-XIAMEN offers semiconductor ...
C(0001) 4H Semi-Insulating SiC Dummy Grade,4”Size -Powerway Wafer PAM-XIAMEN provides high quality ...
4H High Purity Semi Insulating Silicon Carbide Substrate, Dummy Grade,4”Size PAM-XIAMEN offers ...
4H N Type SiC(Silicon Carbide) As-Cut Wafer, 4 ”Size -Powerway Wafer PAM-XIAMEN provides high ...
4H N Type SiC(Silicon Carbide) Lapping Wafer, 4”Size - Powerway Wafer PAM-XIAMEN offers semiconducto...
4H N Type SiC Crystal,4”Size -SiC Wafer Manufacturer PAM-XIAMEN provides high quality single crystal ...