Home Companies ONESEINE TECHNOLOGY CO.,LTD

COB Immersion Gold Aluminum PCB Board For Ultra High Thermal Conductivity Product

ONESEINE TECHNOLOGY CO.,LTD

Contact Us

[China] country

Trade Verify

Address: Address:Room624,Fangdichan development building,Guicheng south,Nanhai,Foshan,China

Contact name:Tracy

Inquir Now

ONESEINE TECHNOLOGY CO.,LTD

Verified Suppliers
  • Trust
    Seal
  • Verified
    Supplier
  • Credit
    Check
  • Capability
    Assessment

COB Immersion Gold Aluminum PCB Board For Ultra High Thermal Conductivity Product

Country/Region china
City & Province foshan
Categories Electronic Accessories & Supplies
InquireNow

Product Details

COB Immersion Gold Aluminum PCB Board For Ultra High Thermal Conductivity Product

 

 

PCB parameter:

 

Material:high thermal conductivity aluminum pcb substrate

Brand:Oneseine

Thickness:2mm

Copper:2OZ

Certificate:ULE354470/ISO/SGS/IATF16949

Soldermask:White

Thermal conductivity coefficient:2.0w/m.k

Surface finish:Immersion gold

E-Test:100%

 

Metal core pcb thickness:

 

The thickness of a metal core PCB (Printed Circuit Board) refers to the overall thickness of the PCB, including the metal core and all the additional layers. The thickness of a metal core PCB is determined by several factors, including the application requirements, the choice of metal core material, and the number of copper layers and their thickness.

Typically, metal core PCBs have a total thickness ranging from 0.8mm to 3.2mm, although thicker boards can be produced for specific applications. The metal core itself contributes to a significant portion of the overall thickness.

The metal core thickness can vary depending on the thermal conductivity requirements and mechanical stability needed for the specific application. Aluminum is one of the commonly used metal core materials due to its good thermal conductivity and lightweight nature. The aluminum core thickness can range from around 0.5mm to 3.0mm, with 1.0mm and 1.6mm being common choices.

In addition to the metal core, the overall thickness of the PCB includes other layers such as dielectric material, copper traces, solder mask, and surface finish. The dielectric layer thickness is typically in the range of 0.05mm to 0.2mm, while the copper layer thickness can vary depending on the specific requirements of the circuit design, such as current-carrying capacity. Typical copper layer thicknesses range from 17µm (0.5oz) to 140µm (4oz) or higher.

It's important to note that the thickness requirements for metal core PCBs can vary significantly based on the application and specific design considerations. It's recommended to consult with a PCB manufacturer or design engineer to determine the appropriate thickness based on your project's requirements and constraints.

 

Kinds of metal core PCB:

 

Metal core PCBs (Printed Circuit Boards) are available in different types, each designed to meet specific requirements based on the application's thermal and mechanical needs. Here are some common types of metal core PCBs:
 
1,Aluminum Core PCBs: Aluminum is the most commonly used material for metal core PCBs due to its good thermal conductivity, lightweight nature, and cost-effectiveness. These PCBs have an aluminum core layer with a thin dielectric layer and copper traces on top. They are widely used in applications such as LED lighting, power supplies, automotive electronics, and power electronics.
2,Copper Core PCBs: Copper core PCBs utilize a copper layer as the core material instead of aluminum. Copper has higher thermal conductivity than aluminum, making it suitable for applications that require even better heat dissipation. These PCBs are used in high-power electronics, RF/microwave circuits, and high-temperature applications.
3,Iron Core PCBs: Iron core PCBs have an iron core instead of aluminum or copper. Iron has a lower thermal conductivity compared to aluminum and copper but offers better magnetic properties. These PCBs find applications in power electronics, motor control, and electromagnetic compatibility (EMC) solutions.
4,Composite Core PCBs: Composite core PCBs combine two or more materials to achieve specific thermal and mechanical properties. For example, a composite core PCB may have an aluminum core for heat dissipation combined with a copper layer for better conductivity. These PCBs are used in applications that require a balance of thermal performance and mechanical strength.
5,Ceramic Core PCBs: Ceramic core PCBs use a ceramic material, such as aluminum oxide (Al2O3) or aluminum nitride (AlN), as the core material. Ceramics have excellent thermal conductivity, electrical insulation properties, and high-temperature resistance. These PCBs are used in high-power applications, RF/microwave circuits, and applications requiring superior thermal performance.
6,Flexible Metal Core PCBs: Flexible metal core PCBs combine the advantages of metal core PCBs with flexibility. They have a metal core layer with flexible material, such as polyimide, on top. These PCBs are used in applications that require both thermal management and flexibility, such as curved LED displays, wearable devices, and automotive applications.
 

Metal core pcb production:

 

Metal Core PCBs (Printed Circuit Boards) are specialized circuit boards that have a base layer made of metal, typically aluminum, instead of the traditional FR4 (fiberglass-reinforced epoxy) material. These boards are commonly used in applications that require efficient heat dissipation, such as high-power LED lighting, power supplies, automotive electronics, and power electronics.

The production process for metal core PCBs is similar to that of traditional PCBs but with some additional considerations for the metal layer. Here are the general steps involved in the production of metal core PCBs:

1,Design: Create a PCB layout using PCB design software, taking into account the circuit requirements, component placement, and thermal considerations.,

2,Material Selection: Choose the appropriate metal core material for your application. Aluminum is the most common choice due to its good thermal conductivity, lightweight, and cost-effectiveness. Other options include copper and alloys like aluminum-backed copper-clad laminates.

3,Base Layer Preparation: Start with a metal sheet of the chosen material, typically aluminum. The sheet is cleaned and treated to remove any contaminants and oxidation, ensuring good adhesion between the metal and the PCB layers.,

4,Lamination: Apply a layer of thermally conductive dielectric material, such as an epoxy-based resin, on both sides of the metal core. This dielectric layer provides electrical insulation and helps to bond the copper layers.

5,Copper Cladding: Add a thin layer of copper to both sides of the dielectric material using methods like electroless copper plating or a combination of electroless and electrolytic copper plating. The copper layer serves as the conductive traces and pads for the circuit.,

6,Imaging: Apply a photosensitive resist layer over the copper surfaces. Expose the resist layer to UV light through a photomask that contains the desired circuit pattern. Develop the resist to remove the unexposed areas, leaving the circuit pattern on the copper.

7,Etching: Submerge the board in an etchant solution that removes the unwanted copper, leaving only the circuit traces and pads as defined by the resist layer. Rinse and clean the board thoroughly after etching.,

8,Drilling: Drill holes through the board at designated locations for component mounting and interconnection. These holes are typically plated through with copper to provide electrical continuity between the layers.

9,Plating and Surface Finish: Further copper plating may be performed to increase the thickness of the circuit traces and pads if required. Apply a surface finish, such as HASL (Hot Air Solder Leveling), ENIG (Electroless Nickel Immersion Gold), or OSP (Organic Solderability Preservative), to protect the exposed copper and facilitate soldering.,

10,Solder Mask and Silkscreen: Apply a solder mask to cover the copper traces and pads, leaving only the desired soldering areas exposed. Apply a silkscreen layer to add component labels, reference designators, and other markings.

11,Testing and Inspection: Conduct electrical testing, such as continuity checks and netlist verification, to ensure the integrity of the circuit. Inspect the board for any manufacturing defects or errors.,

12,Assembly: Mount electronic components onto the metal core PCB using automated pick-and-place machines or manual soldering, depending on the complexity and volume of production.

13,Final Testing: Perform functional testing on the assembled PCB to verify its performance and ensure it meets the required specifications.

It's important to note that the production process can vary depending on the specific requirements of the metal core PCB, the chosen materials, and the manufacturer's capabilities. It's recommended to consult with a professional PCB manufacturer for specific guidelines and recommendations tailored to your project.

Hot Products

Thermal Clad Bergquist HT-07006 Aluminium PCB MC printed circuit boards Basic information: Layer:1 ...
China Factory 2 Layer Aluminum Base Copper core PCB Board PCB parameter: Board thickness: 1.6MM ...
COB Immersion Gold Aluminum PCB Board For Ultra High Thermal Conductivity Product PCB parameter: ...
Fluorescent Lamp Aluminum MCPCB Manufacturer Metal Circuit Board PCB parameter: Brand:Oneseine ...
1 Layer Metal Core PCB Circuit Board Quick Turn One-Stop Service PCB parameter: Material:metal base ...
Rogers 4350B DK 3.48 DF 0.0031 0.1-1.5mm High Frequency PCB Boards fabrication Specification: Base ...