Home Companies QINGDAO ENNENG MOTOR CO.,LTD.

Variable Speed Permanent Magnet AC Motor For Mixing Tank

QINGDAO ENNENG MOTOR CO.,LTD.

Contact Us

[China] country

Trade Verify

Address: No. 18, Xinye Road, High-Tech Zone, Qingdao,Shandong, China

Contact name:Cindy

Inquir Now

QINGDAO ENNENG MOTOR CO.,LTD.

Verified Suppliers
  • Trust
    Seal
  • Verified
    Supplier
  • Credit
    Check
  • Capability
    Assessment

Variable Speed Permanent Magnet AC Motor For Mixing Tank

Country/Region china
City & Province qingdao shandong
Categories Pumps
InquireNow

Product Details

Variable Speed Permanent Magnet AC Motor For Mixing Tank

 

Type
Synchronous Motor
Frequency
50/60Hz
Phase
Three-phase
Protect Feature
Totally Enclosed
AC Voltage
380V
Efficiency
IE 4
Product Name
Permanent magnet synchronous motor
Protection class
IP54
Warranty
18 Months
Material
Rare earth material Silicon steel sheet
Application
Textile, Printing and Packaging Industry, Fan pump, etc.
Voltage
220/380V
Cooling method
IC411
Package
Wooden Case
Feature
Waterproof

 

What Is The Permanent Magnet Synchronous Motor?

 

The PERMANENT MAGNET SYNCHRONOUS MOTOR is mainly composed of the stator, rotor, chassis, front-rear cover, bearings, etc. The structure of the stator is basically the same as that of ordinary asynchronous motors, and the main difference between the permanent magnet synchronous motor and other kinds of motors is its rotor.

 

The permanent magnet material with pre-magnetized (magnetic charged) magnetic on the surface or inside the permanent magnet of the motor, provides the necessary air gap magnetic field for the motor. This rotor structure can effectively reduce the motor volume, reduce loss and improve efficiency.

 

Analysis of the principle of the technical advantages of permanent magnet motor

 

The principle of a permanent magnet synchronous motor is as follows: In the motor's stator winding into the three-phase current, after the pass-in current, it will form a rotating magnetic field for the motor's stator winding. Because the rotor is installed with the permanent magnet, the permanent magnet's magnetic pole is fixed, according to the principle of magnetic poles of the same phase attracting different repulsion, the rotating magnetic field generated in the stator will drive the rotor to rotate, The rotation speed of the rotor is equal to the speed of the rotating pole produced in the stator.

 

Due to the use of permanent magnets to provide magnetic fields, the rotor process is mature, reliable, and flexible in size, and the design capacity can be as small as tens of watts, up to megawatts. At the same time, by increasing or decreasing the number of pairs of rotor permanent magnets, it is easier to change the number of poles of the motor, which makes the speed range of permanent magnet synchronous motors wider. With multi-pole permanent magnet rotors, the rated speed can be as low as a single digit, which is difficult to achieve by ordinary asynchronous motors.

Especially in the low-speed high-power application environment, the permanent magnet synchronous motor can be directly driven by a multi-pole design at low speed, compared with an ordinary motor plus reducer, the advantages of a permanent magnet synchronous motor can be highlighted.

 

Detailed pictures
 

 

Differences Between The Permanent Magnet Motor And Asynchronous Motor:

 

01. Rotor Structure

 

Asynchronous motor: The rotor consists of an iron core and a winding, mainly squirrel-cage and wire-wound rotors. A squirrel-cage rotor is cast with aluminum bars. The magnetic field of the aluminum bar cutting the stator drives the rotor.

 

PMSM Motor: The permanent magnets are embedded in the rotor magnetic poles, and are driven to rotate by the rotating magnetic field generated in the stator according to the principle of magnetic poles of the same phase attracting different repulsions.

 

02. Efficiency

 

Asynchronous motors: Need to absorb current from the grid excitation, resulting in a certain amount of energy loss, motor reactive current, and low power factor.

 

PMSM Motor: The magnetic field is provided by permanent magnets, the rotor does not need exciting current, and the motor efficiency is improved.

 

03. Volume And Weight

 

The use of high-performance permanent magnet materials makes the air gap magnetic field of permanent magnet synchronous motors larger than that of asynchronous motors. The size and weight are reduced compared to asynchronous motors. It will be one or two frame sizes lower than asynchronous motors.

 

04. Motor Starting Current

 

Asynchronous motor: It is directly started by power frequency electricity, and the starting current is large, which can reach 5 to 7 times the rated current, which has a great impact on the power grid in an instant. The large starting current causes the leakage resistance voltage drop of the stator winding to increase, and the starting torque is small so heavy-duty starting cannot be achieved. Even if the inverter is used, it can only start within the rated output current range.

 

PMSM Motor: It is driven by a dedicated controller, which lacks the rated output requirements of the reducer. The actual starting current is small, the current is gradually increased according to the load, and the starting torque is large.

 

05. Power Factor

 

Asynchronous motors have a low power factor, they must absorb a large amount of reactive current from the power grid, the large starting current of asynchronous motors will cause a short-term impact on the power grid, and long-term use will cause certain damage to the power grid equipment and transformers. It is necessary to add power compensation units and perform reactive power compensation to ensure the quality of the power grid and increase the cost of equipment use.

 

There is no induced current in the rotor of the permanent magnet synchronous motor, and the power factor of the motor is high, which improves the quality factor of the power grid and eliminates the need to install a compensator.

 

06. Maintenance

 

Asynchronous motor + reducer structure will generate vibration, heat, high failure rate, large lubricant consumption, and high manual maintenance cost; it will cause certain downtime losses.

 

The three-phase Permanent magnet synchronous motor drives the equipment directly. Because the reducer is eliminated, the motor output speed is low, mechanical noise is low, mechanical vibration is small, and the failure rate is low. The entire drive system is almost maintenance-free.

 

The three-phase Permanent magnet synchronous motor drives the equipment directly. Because the reducer is eliminated, the motor output speed is low, mechanical noise is low, mechanical vibration is small, and the failure rate is low. The entire drive system is almost maintenance-free.

 

In the general industrial sector, the replacement of low-voltage(380/660/1140V) high-efficiency asynchronous motors, the system saves 5% to 30% energy, and the high-voltage(6kV/10kV) high-efficiency asynchronous motors, the system saves 2% to10%.

 

Advantages of permanent magnet motors:

1. Higher Efficiency: Permanent magnet motors are known for their high efficiency. The use of permanent magnets eliminates the need for a separate excitation coil, reducing energy losses associated with excitation. This results in improved efficiency and reduced energy consumption, making permanent magnet motors more energy-efficient than other motor types.

 

2. High Power Density: Permanent magnet motors have a high power density, meaning they can deliver a high amount of torque relative to their size and weight. This makes them ideal for applications where space and weight are limited, such as in electric vehicles or small-scale machinery.

 

3. Compact and Lightweight: The absence of an excitation coil and the use of permanent magnets contribute to the compact and lightweight design of permanent magnet motors. This makes them easier to integrate into various systems and reduces the overall weight of the application.

 

4. Improved Dynamic Response: Permanent magnet motors typically have a faster dynamic response compared to other motor types. They can quickly accelerate, decelerate, and change direction, making them suitable for applications that require precise and rapid control of motor speed and position.

 

5. Reduced Maintenance: Permanent magnet motors have fewer parts compared to other motor types, resulting in reduced maintenance requirements. Since there are no brushes or commutators, there is no need for regular brush replacement or commutator maintenance. This leads to lower maintenance costs and increased reliability.

 

6. Wide Speed Range: Permanent magnet motors can operate over a wide range of speeds, from low to high speeds, without sacrificing efficiency or performance. This versatility makes them suitable for a variety of applications, including both low-speed and high-speed machinery.

 

It's important to note that the specific advantages of permanent magnet motors can vary depending on the application and the specific design and configuration of the motor. However, in general, their high efficiency, compactness, power density, and low maintenance requirements make them a preferred choice in many industrial, commercial, and automotive applications.

 

Application:

Permanent magnet synchronous motors can be combined with frequency converters to form the best open-loop step-less speed control system, which has been widely used for speed control transmission equipment in petrochemical, chemical fiber, textile, machinery, electronics, glass, rubber, packaging, printing, paper making, printing and dyeing, metallurgy and other industries.

 

A permanent magnet motor (also called PM) can be separated into two main categories: Interior Permanent Magnet (IPM) and Surface Permanent Magnet (SPM). Both types generate magnetic flux by the permanent magnets affixed to or inside of the rotor.

 

SPM

SURFACE PERMANENT MAGNET

A type of motor in which permanent magnets are attached to the rotor circumference.

SPM motors have magnets affixed to the exterior of the rotor surface, their mechanical strength is so weaker than the IPM one. The weakened mechanical strength limits the motor’s maximum safe mechanical speed. In addition, these motors exhibit very limited magnetic saliency (Ld ≈ Lq). Inductance values measured at the rotor terminals are consistent regardless of the rotor position. Because of the near unity saliency ratio, SPM motor designs rely significantly, if not completely, on the magnetic torque component to produce torque.

 

IPM

INTERIOR PERMANENT MAGNET

A type of motor that has a rotor embedded with permanent magnets is called IPM.

IPM motors have a permanent magnet embedded into the rotor itself. Unlike their SPM counterparts, the location of the permanent magnets makes IPM motors very mechanically sound, and suitable for operating at very high speeds. These motors also are defined by their relatively high magnetic saliency ratio (Lq > Ld). Due to their magnetic saliency, an IPM motor has the ability to generate torque by taking advantage of both the magnetic and reluctance torque components of the motor.

 

Why you should choose an IPM motor instead of an SPM?

1. High torque is achieved by using reluctance torque in addition to magnetic torque.

2. IPM motors consume up to 30% less power compared to conventional electric motors.

3. Mechanical safety is improved as, unlike in an SPM, the magnet will not detach due to centrifugal force.

4. It can respond to high-speed motor rotation by controlling the two types of torque using vector control.

 

 

Brushless permanent magnet (PM) motors operate with an AC power supply so are often referred to as PMAC motors. The use of permanent magnets eliminates the need for conductors (rotor bars) so rotor losses are eliminated. This design makes it possible to combine high efficiency, low speed, and high torque in a single package. For small motor sizes, the efficiency of the PM motor maybe 10% to 15% greater than older, standard-efficiency motors at the same load point. These efficiency gains hold over the entire range of typical motor loads.

 

How to improve the efficiency of the motor?

To improve the efficiency of the motor, the essence is to reduce the loss of the motor. The loss of the motor is divided into mechanical loss and electromagnetic loss. For example, for an AC asynchronous motor, the current passes through the stator and rotor windings, which will produce copper loss and conductor loss, while the magnetic field is in the iron. It will cause eddy currents to bring about hysteresis loss, high harmonics of the air magnetic field will generate stray losses on the load, and there will be wear losses during the rotation of bearings and fans.

 

To reduce the loss of the rotor, you can reduce the resistance of the rotor winding, use a relatively thick wire with low resistivity, or increase the cross-sectional area of the rotor slot. Of course, the material is very important. Conditional production of copper rotors will reduce losses by about 15%. The current asynchronous motors are basically aluminum rotors, so the efficiency is not so high.

 

Similarly, there is copper loss on the stator, which can increase the slot face of the stator, increase the full slot ratio of the stator slot, and shorten the end length of the stator winding. If a permanent magnet is used to replace the stator winding, there is no need to pass the current. Of course, the efficiency can be obviously improved, which is the fundamental reason why the synchronous motor is more efficient than the asynchronous motor.

 

For the iron loss of the motor, high-quality silicon steel sheets can be used to reduce the loss of the hysteresis or the length of the iron core can be lengthened, which can reduce the magnetic flux density, and can also increase the insulating coating. In addition, the heat treatment process is also critical.

The ventilation performance of the motor is more important. When the temperature is high, the loss will of course be large. The corresponding cooling structure or additional cooling method can be used to reduce friction loss.

 

High-order harmonics will produce stray losses in the winding and iron core, which can improve the stator winding and reduce the generation of high-order harmonics. Insulation treatment can also be performed on the surface of the rotor slot, and magnetic slot mud can be used to reduce the magnetic slot effect.

 

Due to the need for a drive or controller, variable-speed PMAC motors cost much more than constant-speed Premium Efficiency induction motors. PM motors have variable-speed capability, however, so are equivalent replacements for an electronic pulse-width modulated variable frequency drive (VFD) controlling a new Premium Efficiency inverter-duty motor. When replacing constant-speed motors in variable flow applications, energy savings due to the variable-speed capability of the PMAC motor will greatly exceed the savings due to the increased efficiency of the motor itself. Permanent magnet motors provide improved efficiency over their entire operating range and meet or exceed the International Electrotechnical Commission (IEC) IE4 efficiency standards.

 

Hot Products

High-Efficiency Water Cooled PMSM Permanent Magnet Electric Motor Energy Efficiency Standards comply ...
Energy Saving Liquid Cooled High Torque Permanent Magnet Motor Energy Efficiency Standards comply ...
Energy Saving 3 Phase Permanent Magnet Motor For Cooling Tower What Is The Permanent Magnet ...
Low Maintenance Variable Speed Permanent Magnet Motor For Cooling Tower Energy efficiency standards ...
Industrial Use Surface Mounted Permanent Magnet Synchronous Motor Energy Efficiency Standards comply ...
High Power Industry Use Energy Saving IPM SPM Motor What Is The Permanent Magnet Synchronous Motor? ...