Home Companies QINGDAO ENNENG MOTOR CO.,LTD.

Simple Structure Neodymium Permanent Magnet Motor PMM 5.5kw-3000kw

QINGDAO ENNENG MOTOR CO.,LTD.

Contact Us

[China] country

Trade Verify

Address: No. 18, Xinye Road, High-Tech Zone, Qingdao,Shandong, China

Contact name:Cindy

Inquir Now

QINGDAO ENNENG MOTOR CO.,LTD.

Verified Suppliers
  • Trust
    Seal
  • Verified
    Supplier
  • Credit
    Check
  • Capability
    Assessment

Simple Structure Neodymium Permanent Magnet Motor PMM 5.5kw-3000kw

Country/Region china
City & Province qingdao shandong
InquireNow

Product Details

Simple Structure Neodymium Rare Earth Three Phase Permanent Magnet Motor

 


 
What Is The Permanent Magnet Synchronous Motor?
 
The PERMANENT MAGNET SYNCHRONOUS MOTOR is mainly composed of the stator, rotor, chassis, front-rear cover, bearings, etc. The structure of the stator is basically the same as that of ordinary asynchronous motors, and the main difference between the permanent magnet synchronous motor and other kinds of motors is its rotor.
 
The permanent magnet material with pre-magnetized (magnetic charged) magnetic on the surface or inside the permanent magnet of the motor, provides the necessary air gap magnetic field for the motor. This rotor structure can effectively reduce the motor volume, reduce loss and improve efficiency.
 

Detailed pictures

Why choose permanent magnet ac motors?
 
Permanent magnet AC (PMAC) motors offer several advantages over other types of motors, including:
 
High Efficiency: PMAC motors are highly efficient due to the absence of rotor copper losses and reduced winding losses. They can achieve efficiencies of up to 97%, resulting in significant energy savings.
 
High Power Density: PMAC motors have a higher power density compared to other motor types, which means they can produce more power per unit of size and weight. This makes them ideal for applications where space is limited.
 
High Torque Density: PMAC motors have a high torque density, which means they can produce more torque per unit of size and weight. This makes them ideal for applications where high torque is required.
 
Reduced Maintenance: Since PMAC motors have no brushes, they require less maintenance and have a longer lifespan than other motor types.
 
Improved Control: PMAC motors have better speed and torque control compared to other motor types, making them ideal for applications where precise control is required.
 
Environmentally Friendly: PMAC motors are more environmentally friendly than other motor types since they use rare earth metals, which are easier to recycle and produce less waste compared to other motor types.
 
Overall, the advantages of PMAC motors make them an excellent choice for a wide range of applications, including electric vehicles, industrial machinery, and renewable energy systems.
 
 
Permanent magnet AC (PMAC) motors have a wide range of applications including:
 
Industrial Machinery: PMAC motors are used in a variety of industrial machinery applications, such as pumps, compressors, fans, and machine tools. They offer high efficiency, high power density, and precise control, making them ideal for these applications.
 
Robotics: PMAC motors are used in robotics and automation applications, where they offer high torque density, precise control, and high efficiency. They are often used in robotic arms, grippers, and other motion control systems.
 
HVAC Systems: PMAC motors are used in heating, ventilation, and air conditioning (HVAC) systems, where they offer high efficiency, precise control, and low noise levels. They are often used in fans and pumps in these systems.
 
Renewable Energy Systems: PMAC motors are used in renewable energy systems, such as wind turbines and solar trackers, where they offer high efficiency, high power density, and precise control. They are often used in the generators and tracking systems in these systems.
 
Medical Equipment: PMAC motors are used in medical equipment, such as MRI machines, where they offer high torque density, precise control, and low noise levels. They are often used in the motors that drive the moving parts in these machines.


Working of Permanent Magnet Synchronous Motor:

The working of the permanent magnet synchronous motor is very simple, fast, and effective when compared to conventional motors. The working of PMSM depends on the rotating magnetic field of the stator and the constant magnetic field of the rotor. The permanent magnets are used as the rotor to create constant magnetic flux and operate and lock at synchronous speed. These types of motors are similar to brushless DC motors.

The phasor groups are formed by joining the windings of the stator with one another. These phasor groups are joined together to form different connections like a star, Delta, and double and single phases. To reduce harmonic voltages, the windings should be wound shortly with each other.

When the 3-phase AC supply is given to the stator, it creates a rotating magnetic field and the constant magnetic field is induced due to the permanent magnet of the rotor. This rotor operates in synchronism with the synchronous speed. The whole working of the PMSM depends on the air gap between the stator and rotor with no load.

If the air gap is large, then the windage losses of the motor will be reduced. The field poles created by the permanent magnet are salient. The permanent magnet synchronous motors are not self-starting motors. So, it is necessary to control the variable frequency of the stator electronically.
 
EMF and Torque Equation
In a synchronous machine, the average EMF induced per phase is called dynamic induces EMF in a synchronous motor, the flux cut by each conductor per revolution is Pϕ Weber
Then the time taken to complete one revolution is 60/N sec
 
The average EMF induced per conductor can be calculated by using
 
( PϕN / 60 ) x Zph = ( PϕN / 60 ) x 2Tph
 
Where Tph = Zph / 2
 
Therefore, the average EMF per phase is,
 
= 4 x ϕ x Tph x PN/120 = 4ϕfTph
Where Tph = no. Of turns connected in series per phase
 
ϕ = flux/pole in Weber
 
P= no. Of poles
 
F= frequency in Hz
 
Zph= no. Of conductors connected in series per phase. = Zph/3
 
The EMF equation depends on the coils and the conductors on the stator. For this motor, the distribution factor Kd and pitch factor Kp are also considered.
 
Hence, E = 4 x ϕ x f x Tph xKd x Kp
 
The torque equation of a permanent magnet synchronous motor is given as,
 
T = (3 x Eph x Iph x sinβ) / ωm

 

Structure of the IPM (interior permanent magnet) motor

 

A conventional SPM (surface permanent magnet) motor has a structure in which a permanent magnet is attached to the rotor surface. It only uses magnetic torque from a magnet. On the other hand, the IPM motor uses reluctance through magnetic resistance in addition to magnetic torque by embedding a permanent magnet in the rotor itself.

 

SPM vs IPM Motor Rotor Structure

 

IPM (Interior Permanent Magnet) Motor Features

 

High torque and high efficiency
High torque and high output are achieved by using reluctance torque in addition to magnetic torque.

 

Energy-saving operation
It consumes up to 30% less power compared to conventional SPM motors.

 

High-speed rotation
It can respond to high-speed motor rotation by controlling the two types of torque using vector control.

 

Safety
Since the permanent magnet is embedded, mechanical safety is improved as, unlike in an SPM, the magnet will not detach due to centrifugal force.

 

Vector Control Features

While a conventional system (120-degree conduction system) has the current impressed in the motor as a square wave, a vector control impresses voltage which turns into a sine wave towards the rotor's position (angle of the magnet), so it becomes possible to control the motor current.

 

 

 

The permanent magnetic synchronous motor has the following characteristics:

 

1. Rated efficiency is 2% to 5% higher than normal asynchronous motors;

 

2. The efficiency rises rapidly with the increase of the load. When the load changes within the range of 25% to 120%, it maintains high efficiency. The high-efficiency operating range is much higher than that of ordinary asynchronous motors. Light-load, variable-load, and full-load all have significant energy-saving effects;

 

3. Power factors up to 0.95 and above, no reactive compensation required;

 

4. The power factor is greatly improved. Compared with asynchronous motors, the running current is reduced by more than 10%. Due to the decrease in operating current and system losses, energy-saving effects of about 1% can be achieved.

 

5. Low-temperature rise, high power density: 20K lower than three-phase asynchronous motor temperature rise, the design temperature rise is the same and can be made into a smaller volume, saving more effective materials;

 

6. High starting torque and high overload capacity: according to requirements, it can be designed with high starting torque (3-5 times) and high overload capacity;

 

7. The variable frequency speed control system is used, which is better in dynamic response and better than that of asynchronous motors.

 

8. The installation dimensions are the same as the asynchronous motors currently widely used, and the design and selection are very convenient.

 

9. Due to the increase in power factor, the visual power of the power supply system transformer is greatly reduced, which improves the power supply capacity of the transformer, and can also greatly reduce the cost of the system cable (new project);

 

10. When the new project is built, all the drive systems use permanent magnetic synchronous motors, the project investment is basically the same as the use of asynchronous motors, and the project can continue to obtain energy-saving benefits after the project is put into operation;

 

In the general industrial sector, the replacement of low-voltage(380/660/1140V) high-efficiency asynchronous motors, the system saves 5% to 30% energy, and the high-voltage(6kV/10kV) high-efficiency asynchronous motors, system saves 2% to10%.

Hot Products

OEM ODM Service Low Speed 3 Phase PMSM Motor Without Gearbox What Is The Permanent Magnet Synchronou...
Energy Saving Low Starting Current 3 Phase PMSM Motor For Belt Conveyor What Is The Permanent Magnet ...
Brushless AC 3 Phase Variable Frequency Drive PMSM Motor For Belt Conveyor What Is The Permanent ...
Eco-Friendly Direct Drive Gearless Neodymium Magnet 3 Phase PMSM Motor What Is The Permanent Magnet ...
High-Efficiency Water Cooled PMSM Permanent Magnet Electric Motor Energy Efficiency Standards comply ...
Low Noise Maintenance Free 500kw 3 Phase PMSM Motor For Plastic Extruder What Is The Permanent ...