Home Companies Shenzhen Zion Kaifull Automation Technology Co., Ltd.

3110HS1200 3 Phase Hybrid Stepper Motor

Shenzhen Zion Kaifull Automation Technology Co., Ltd.

Contact Us

[China] country

Trade Verify

Address: Kaifull Industrial Part, Goabu Industrial Area, Donguan, Guangdong, China, 523287

Contact name:Bruce Niu

Inquir Now

Shenzhen Zion Kaifull Automation Technology Co., Ltd.

Verified Suppliers
  • Trust
    Seal
  • Verified
    Supplier
  • Credit
    Check
  • Capability
    Assessment

3110HS1200 3 Phase Hybrid Stepper Motor

Country/Region china
City & Province guangdong
Categories Countertops, Vanity Tops & Table Tops
InquireNow

Product Details

1. Products Overview

Stepper motor is an executive agency that converts electrical pulses into angle displacement. You can control the angle by controlling the number of pulse to achieve the purpose of accurate position control. At the same time, you can control the speed and acceleration of the motor by controlling the input pulse frequency to achieve the purpose of the speed control.

Step motor, also called as pulse motor is normally classified by structural as: reactive step motors (VR), permanent magnet step motor (PM), and hybrid step motor (HB). Step motor can also be divided into rotation and straight lines according to the form of movement. According to whether there is an encoder, can be divided as open-loop and closed-loop step motors.

Reactive step motor: there are windings on the stator and rotor consisting of soft magnetic materials. The structure is simple, the cost is low, the step distance is small, and it can reach 1.2 °, but the dynamic performance is poor, the efficiency is low, the heating is large, and the reliability is difficult to guarantee.

Permanent Magnet step motor: The rotor of the permanent magnet step motor is made of permanent magnet material, and the rotor is the same as that of the stator. It is characterized by good dynamic performance and large output torque, but this motor has poor accuracy and large steps (generally 7.5 ° or 15 °).

Hybrid Step motor: Hybrid steaming motor integrates the advantages of reaction and permanent magnets both. It has a multi-phase windings, permanent magnet material on the rotor, and multiple small teeth on the rotor and stator to improve the step accuracy. It is characterized by large output torque, good dynamic performance, and small steps, which can meet automation applications which have high precision requirement.

 

According to the quantity of phases, there are two -phase, three, and five -phase step motors. The most popular is the two-phase hybrid step motor, accounting for about 97%of the market share. The reason is that the two-phase step motor is more cost-effective, and also has satisfactory performance due to subdivision or micro stepping function of its drive.

The basic step angle of a two-phase step motor is 1.8 °/step. Matched with a half-step drive, the step angle is reduced to 0.9 °. Matched with a micro stepping driver, the step angle can be subdivided up to 256 times (0.007 ° per micro step), which can meet the requirement of most applications.

 

Although the stepper motor and its control technology are currently very mature, if not used properly, there may still be a situation of step loss, i.e. position error. Next, we will analyze the common causes and solutions of position errors.

The reasons for the position error of stepper motors

Large load inertia

When the inertia of the load driven by the stepper motor is large, its inertia will generate inertia force, causing the current waveform output by the stepper motor controller to be inconsistent with the actual required current waveform, resulting in inaccurate position of the stepper motor.

The stepper motor driver is not set correctly

Incorrect settings of the stepper motor driver, such as fine fraction, step angle, and other parameter settings, can also lead to an increase in the position error of the stepper motor.

The pulse signal output by the stepper motor controller is unstable

When the pulse signal output by the stepper motor controller is unstable, it can lead to inaccurate position of the stepper motor. This situation is more common when using long-distance transmission of control signals.

The stepper motor is damaged

The rotor or stator of the stepper motor may be damaged, or the bearings may be damaged, which can lead to positional errors in the stepper motor.

Methods to solve the position error of stepper motors

Control load inertia

The position error of the stepper motor can be reduced by reducing the load inertia. For example, when driving a stepper motor with inertia loads, methods such as installing shock absorbers and changing the load inertia mode can be used to reduce the load inertia.

Set the driver parameters correctly

Correctly set the subdivision and step angle parameters of the stepper motor driver to ensure the position accuracy.

Stable output pulse signal

High precision pulse generators or adjustable filters can be used to stabilize the output pulse signal and reduce the position error of stepper motors.

Replace damaged stepper motor components

When the stepper motor is damaged, it is necessary to replace the corresponding components in order to restore the normal operation of the stepper motor.

 

The application of Kaifull PRMCAS stepper motors

 

Kaifull hybrid stepper motors are mainly used in digital control systems, with high accuracy and reliable operation. If position detection and speed feedback are used, closed-loop control can also be achieved. Stepper motors have been widely used in digital control systems, such as digital to analog conversion devices, CNC machine tools, computer peripherals, automatic recorders, clocks, etc. In addition, they have also been applied in industrial automation production lines, printing equipment, etc.

The application scenarios of Kaifull stepper motors are very wide, and the following are some application examples:

Industrial field: Stepper motors are used in automotive instrumentation, machine tool automation production equipment, robot manufacturing, inspection, and process flow.

Security field: Used for monitoring products, such as PAN/ZOOM/TILT for security cameras.

Medical field; Hydraulic pumps, ventilators, and blood analyzers used in medical scanners, samplers, digital oral photography.

In the field of consumer electronics, it is used in various stages of electronic product production, such as solder paste printing, SMT placement, reflow soldering, visual inspection, production of cables with terminals, dispensing machines, screen laminating machines, 3D printers, etc.

Precision equipment and instruments: used in ATM machines, inkjet printers, engraving machines, photo machines, spray painting equipment, computer peripherals and massive data storage devices, precision instruments, industrial control information systems, office automation, robots and other fields, especially suitable for applications with smooth operation, low noise, fast response, long service life, and high output torque.

Textile machinery: It is widely used in textile machinery equipment such as computerized embroidery machines. These stepper motors have the characteristics of low torque retention, fast response speed, low operating noise, stable operation, good control performance, and low overall cost.

Flat mobile devices: such as laser cutting machines, printers, scanners, etc.

Measurement instruments: such as high-precision 3D scanners, optical measurement equipment, etc.

Medical equipment: used for medical and surgical instruments, etc.

Camera lens. Used for focusing and moving optical devices, etc.

These application scenarios typically require stepper motors to have characteristics such as high precision, low noise, fast response, and long lifespan to meet the positioning, control, and performance requirements of different industries.

 

2. Hybrid Stepper Motor General Technical Specifications

 

Step Angle1.2° (3 Phase)
Step Angle Accuracy0.06°
Shaft TypeSingle shaft, Dia. 6.35 or 8.0mm (Customizable)
Max. Temperature RiseLess than 80 °C (Rated Current)
Max. Surface TemperaturesMax Allowed 100℃
Ambient Temperature-20 °C ~ +50 °C
Insulation Grade100 MΩ Min. , Class B
Dielectric Strengt1500 VAC for 1 Minute
Max. Axial Load150N
Max. Radial Load490N (10mm from mounting Surface)
CertificatesRohs, CE, CCC (As per Customer Need)

 

3. Hybrid Stepper motor Performance Datasheet

ModelCurrentResistanceInductanceHolding TorqueCable TypeRotor InertiaBi/UnipolarWeightLength
 A/ØΩ/ØmH/ØN.m g.cm2# of Leadskgmm
3110HS1200-6004S-1326.00.568.7912.0Connector9720Bi (4)6.5132

 

4. Mechanical Dimensions (in mm)

 

5. Wiring Diagram

 

6. Torque Speed Curves

 

Hot Products

YK-XXY150 XXY UVW High Precision Alignment Plantform for Automation Motion Control 1. Products ...
YK-XXY160 XXY UVW XYR High Precision Alignment Plantform for Automation Motion Control 1. Products ...
YK-XXY180 XXY UVW XYR High Precision Alignment Plantform for Automation Motion Control 1. Products ...
YK-XXY200 XXY UVW XYR High Precision Alignment Plantform for Automation Motion Control 1. Products ...
YK-XXY250 XXY UVW XYR High Precision Alignment Plantform for Automation Motion Control 1. Products ...
YK-XXY350 XXY UVW XYR High Precision Alignment Plantform for Automation Motion Control 1. Products ...